
1

INF 117
Project in Software Engineering

Lecture Notes - Spring Quarter, 2008

Michele Rousseau
Set 8 - Testing

What’s Next

Set 8 - Testing 2

Announcements
k Drop Boxes

● We will use drop boxes for the remainder of the qtr

● Please still post all deliverables
◘EXCEPT: Team Appraisals, Peer Evals & Course Logs

k Due: Thursday

Set 8 - Testing 3

● Design Iteration #3

● Code Iteration #1

● Project Plan #3

k Friday: Cust Approval of Design

Today’s Class

kTesting
●Coverage-Based Testing

●Equivalence Partitioning

Set 8 - Testing 4

●Boundary Value Testing

Motivation

kPeople are not perfect
●We make errors in design and code

●Goal of testing: given some code,
 ibl

Set 8 - Testing 5

uncover as many errors are possible

kImportant and expensive activity
●Not unusual to spend 30-40% of

total project effort on testing

The Purpose of Testing
Design and coding are creative. but…
kTesting is Destructive

●The primary goal is to “break” the software
kVery often the same person does both

coding and testing

Set 8 - Testing 6

g g
●This is not ideal… why?
●Need “split personality”:

◘when you start testing, become paranoid and
malicious

●Surprisingly hard to do: people don’t like
finding out that they made mistakes

2

Testing Approach
Testing is a process of executing software

with the intent of finding errors

kGood testing has a high probability of
finding as-yet-undiscovered errors

Set 8 - Testing 7

finding as-yet-undiscovered errors

kSuccessful testing discovers unknown
errors

k If did not find any errors, need to ask

“Was our testing approach is good?”

Testing

kUnit Testing

kIntegration Testing

kSystem Testing

Set 8 - Testing 8

kRegression Testing

V-Model of Development & Testing
(the big picture)

Develop Acceptance Tests
Acceptance Test Review

Requirements Review
Develop Requirements Execute System Tests

Set 8 - Testing 9

Develop Integration Tests
Integration Tests Review

Design Review
Design Execute Integration Tests

Develop Unit Tests
Unit Tests Review

Code Review
Code Execute Unit Tests

Fundamental Testing Questions

kTest Criteria: What should we
test?

kTest Oracle: Is the test correct?

Set 8 - Testing 10
How to make the most of limited resources?

kTest Adequacy: How much is
enough?

kTest Process: Is our testing
effective?

Some Commonly Used Testing
Approaches
kCoverage or Control-flow based

kData-flow based

kEquivalence Partitioning

Set 8 - Testing 11

kEquivalence Partitioning

kBoundary Value Analysis

Coverage-Based Testing

kFlow Graphs
●Control Flow
◘Partial order of Statement Execution

kD Fl

Set 8 - Testing 12

kData Flow
◘Flow of values from Definition to

Variables
Graph representation of control flow and

data flow relationships

3

2,3,4 5

6

9´

10

14

T T

F

F 9 T

F

7

TF

9a 9b

Prog P’s Control Flow Graph
(CFG)

Set 8 - Testing 13

12

F

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

if (Y < 20 and then X mod 2 = 0) then
Y := Y + 20;

else
Y := Y – 20;

end if;
return 2*X + Y;

end P;

1
2
3
4
5
6
7
8

All-Statements Coverage
kSelect test cases such that every

node in the graph is visited
●Also called node coverage
◘G ara tees that e er state e t i

Set 8 - Testing 14

◘Guarantees that every statement in
the source code is executed at least
once

kSelects minimal number of test
cases

6 10

T
F

T

7

TF

At least 2 test cases needed

All-Statements Coverage of P

Set 8 - Testing 15

2,3,4 5

12

14F 9

F
Example all-statements-adequate
test set:

(X = 20, Y = 10)
<2,3,4,5,6,7,9,10,14>

(X = 20, Y = 30)
<2,3,4,5,6,7,9,12,14>

All-Branches Coverage

kSelect test cases such that every
branch in the graph is visited

◘Guarantees that every branch in the
source code is executed at least once

Set 8 - Testing 16

source code is executed at least once

kMore thorough than All-
Statements coverage
●More likely to reveal logical errors

2,3,4 5

6 10

14

T
F

9

T

7

TF

At least 2 test cases needed

All-Branches Coverage of P

Set 8 - Testing 17

2,3,4 5

12

149

F

Example all-branches-adequate
test set:

(X = 20, Y = 10)
<2,3,4,5,6,7,9,10,14>

(X = 15, Y = 30)
<2,3,4,5,6,7,5,9,12,14>

All-Edges Coverage

kSelect test cases such that every
edge in the graph is visited

◘Takes complex statements into
consideration – treats them as

Set 8 - Testing 18

consideration treats them as
separate nodes

kMore thorough than All-Branches
coverage
●More likely to reveal logical errors

4

2,3,4 5

6

9b

10

14

T T
F 9a T

7

TF

At least 3 test cases needed

All-Edges Coverage of P

Set 8 - Testing 19

12

FF

Example all-edges-adequate test set:
(X = 20, Y = 10)

<2,3,4,5,6,7,9a,9b,10,14>
(X = 5, Y = 30)

<2,3,4,5,9a,12,14>
(X = 21, Y = 10)

<2,3,4,5,6,7,5,6,7,5,9a,9b,12,14>

All-Paths Coverage

kPath coverage
●Select test cases such that every

path in the graph is visited

●L bl

Set 8 - Testing 20

●Loops are a problem
◘0, 1, average, max iterations

kMost thorough…

…but is it feasible?

2 3 4 5

6

9b

10

14

T T
F

9
T

7

TF

Infinitely many test cases needed

All-Paths Coverage of P

Set 8 - Testing 21

2,3,4 5 9b

12

14

F

9a

F
Example all-paths-
adequate test set:

(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)
(X = 35, Y = 10)
…

Subsumption of Criteria

kC1 subsumes C2 if any C1-
adequate test T is also C2-
adequate
●B t T1 ti f i C1

Set 8 - Testing 22

●But some T1 satisfying C1 may
detect fewer faults than some T2
satisfying C2

Data-flow
Test connections between variable

definitions (“write”) and variable uses
(“read”)

kVariation of the control flow graph
●A ode represe ts a si gle state e t ot a

Set 8 - Testing 23

●A node represents a single statement, not a
single-entry-single-exit chain of statements

k Set DEF(n) contains variables that are
defined at node n (i.e., they are written)

kSet USE(n): variables that are read

Def-Use Pair
kA def-use (DU) pair for variable x is a
kpair of nodes (n1,n2) such that
●x is in DEF(n1)
●the definition of x at n1 reaches n2

 USE(2)

Set 8 - Testing 24

● x is in USE(n2)
k i.e., the value that is assigned to x at n1

is used at n2
● Since the definition reaches n2, the

value is not “killed” along some path
n1…n2

5

6 10

TX

Y

YX
X

X

T

7

TF X

X

P’s Control and Data Flow
Graph

Set 8 - Testing 25

2,3,4 5 9b

12

14

T

F

9a
T

F
Y

X

Y X

X

Y

T
F

Test Adequacy

k Coverage-Based Testing
● Coverage metrics

◘ when sufficient percentage of the program structure has been
exercised

k Fault-Based Testing
● E i i l

Tells you when to stop testing

Set 8 - Testing 26

● Empirical assurance
◘ when failures/test curve flatten out

● Error seeding
◘ percentage of seeded faults found is proportional to the percentage

of real faults found

k Error-Based Testing
● faults found in common are representative of total

population of faults
● Equivalence Partitioning

Test Criteria
k Testing must select a subset of test cases that are

likely to reveal failures
k Test Criteria provide the guidelines, rules,

strategy by which test cases are selected
● actual test data
● conditions on test data
● requirements on test data

Set 8 - Testing 27

● requirements on test data
k Equivalence partitioning is the typical approach

● a test of any value in a given class is equivalent to a
test of any other value in that class

● if a test case in a class reveals a failure, then any other
test case in that class should reveal the failure

● some approaches limit conclusions to some chosen
class of errors and/or failures

Equivalence Partitioning (EQP)

kTesting technique
●Reduces the # of test cases
◘Make the # of test cases manageable

S t ti d i ti f t t

Set 8 - Testing 28

◘Systematic derivation of test cases

●Reasonably tests the system

Basic Principle:
Some distinctions don’t make a difference

EQP : How does it work

Divide inputs into equivalent
partitions
●i e Find a small # set of

Basic Method:
Notice when any element in the partition
will produce the same results
(ie find the same faults)

Set 8 - Testing 29

●i.e. Find a small # set of
representative input values

●For each Class program behaves in
an “equivalent” way

●Smaller test set – but equally
effective

EQP: Reduces test cases

Input domain

2

Input domain
partitioned into four

sub-domains.

Set 8 - Testing 30

1
2

3

4

Large set of
test inputs.

Four test inputs, one
selected from each

sub-domain.

6

How to partition? Example 1

kSuppose that program P takes an

input X, X being an integer.

Set 8 - Testing 31

kFor X<0 perform task (T1)

kFor X>=0 perform task (T2)

Set 8 - Testing 32

Set 8 - Testing 33

Two sub-domains

One Possible
Test Case:
X=-3

Another test case:
X=15

X<0 X>=0

Equivalence class Equivalence class

Set 8 - Testing 34

All test inputs in the X<0 sub-domain are considered
equivalent.
The assumption is that if one test input in this sub-domain
reveals an error in the program, so will the others.
This is true of the test inputs in the X>=0 sub-domain also.

EQP: Basic Process
k First you must break the input into sub-domains

(partitions)
● Look at input and determine common properties
● Values with in defined range
● Values outside of the defined range
● Extremes

Set 8 - Testing 35

Extremes
● Try to include input that will force incorrect output

◘How well does the code perform exception handling

k If the sub-domains are well done
● should be able to create a few (or ideally) one test

case that will represent the entire domain

Include inputs in and out of
range

IeInput Test Data
Inputs causing

anomalous
behavior

Set 8 - Testing 36

OeOutput Set

Outputs which reveal
the presence of

defects

System

7

EQP: Example 2
kInput should be a numerical month

●Valid Inputs: 1-12

kWhat are potential Classes?
● Input within range:

Set 8 - Testing 37

p g
◘1-12

●Out of Range
◘High End: 20, 99, 3-digit, 4-digit
◘Low End: Negative Numbers
◘Alphanumeric
◘Special Characters / Punctuation

Boundary Value Analysis (BVA)
k Select test cases based on the boundaries values
k Look for inputs

● On the boundary
● On either side of the boundary

k F i th l

Set 8 - Testing 38

k For numeric month example
● Boundary Values

◘Low End: 0,1,2
◘High End: 11,12,13

k Combining this technique with Equivalence
Partitioning is much more effective

EQP &BVA
k Input

● 5-digit integer between 10,000 and 99,999,
k Partitions

● <10,000
● 10,000-99,999
● > 10, 000

k B d V l

Set 8 - Testing 39

k Boundary Values
● 00000
● 09,999 –10,000
● 99,998 – 99,999 – 100,000

k Outside
● Alphanumeric
● Symbols

What do you need to do?

kHave a plan!
●Not monkey testing

kCreate test cases wisely (think
b h h)

Set 8 - Testing 40

about what they are covering)

kDefine your test cases and results

kSee Read-set templates

Ready-set Templates

khttp://readyset.tigris.org/nonav
/templates/frameset.html

khttp://readyset.tigris.org/nonav
/t l t /f t ht l

Set 8 - Testing 41

/templates/frameset.html

kAdd results.. Pass/fail

Integration Testing
kPurpose: to exercise the interfaces

between classes/modules
●Driven by design
●What should it take in?
●What should it supply?

Set 8 - Testing 42

●What should it supply?
●What happens if they send the wrong

stuff?
kBasic approaches
●Top-Down
●Bottom-up

Run tests
developed
during the

design phase

8

Which Approach to use?

k Top-Down or Bottom Up?

k In practice, most integration
involves a combination of these
t t

Set 8 - Testing 43

strategies

System Testing

kBlack box…

kRunning Acceptance Test Plan

Set 8 - Testing 44

One Last Announcement
kNo class Wednesday

Set 8 - Testing 45

