INF 117
Project in Software Engineering

AER BNE ' Y
Lecture Notes - Spring Quarter, 2008

Michele Rousseau
Set 8- Testing

Announcements
K Drop Boxes
® We will use drop boxes for the remainder of the gtr

® Pleasesstill post all deliverables
o EXCEPT: Team Appyaisals, Peer Evals & Course Logs

K Due: Tlnu!scléu]
® Design [teration #3
® Code Iteration #1
® Project Plan #3

k Fridag: Cust Approval of Design

I Set 8 - Testing 3

I N

Motivation

kPeople are not perfect
® We make errors in design and code

® Goal of testing: given some code,

uncovey as many errors are })OSSil)l(—)

Klmportant and expensive activity

®Not unusual to spend 30-40% of

total project effort on testing

0 EEE

Set 8 - Testing 5

What’s Next

MAY 2008

Tuesday

Wednesday

1 Week 7
Mother's Day

8 Week 8 |19 20

PS5 Week ® 28 famanislbuy |27

| Set 8 - Testing

Today’s Class

KTesting
oCoverage-Based Testing
eEFquivalence Partitioning

®Boundary Value Testing

l Set 8 - Testing

The Purpose of Testing

Design and coding are creative. but..
kTesting is Destructive
® The primary goal is to “break” the software
kVenJ often the same person does both
coding and testing
© This is not ideal... why?
® Need “split personalitg":

Bwhen you start testing, become paranoid and
malicious

] ® Surprisingly hard to do: people don't like

finding out that they made mistakes
l Set8 - Testing

Testing Approach
Testing is a process of executing software
with the intent of finding errors

KGood testing has a high probability of

{incling as-yet-undiscovered errors

kSuccessful testing discovers unknown

eYyors

— k If did not find any errors, need to ask
_. “Was our testing approach is 800(1?"

Set 8 - Testing 7

V-Model of Development & Testing
(the big picture)

Develop Requirements Execute System Tests
Develop Acceptance Tests
Execute Integration Tests

Develop Integration Tests

] Code Execute Unit Tests

Develop Unit Tests
Set 8 - Testin 9

Testing

KUnit Testing
KIntegration Testing
kSystem Testing
kRegression Testing

Set 8 - Testing 8

Fundamental Testing Questions

kTest Criteria: What should we
test?

kTest Oracle: Is the test correct?

KTest AdequaCLJ: How much is
enough?

KTest Process: Is our testing

N A= =1

Some Commonly Used Testing
Approaches

kCoverage or Control-flow based
kData~flow based

KEquivalence Partitioning
kBounclanJ Value Analg sis

_I Set8 Testing 1

effective?
. 1L‘,‘«-r’aw to make the most of limited resources?l
Set 8 - g

Coverage-Based Testing

kFlow Graphs
o Control Flow

nPartial order of Statement Fxecution

kData Flow

oFlow of values from Definition to
Variables

Graph representation of control flow and
data flow relationships

) N

I Set 8 - Testing 12

—

Prog P’s Control Flow Graph

function P return INTEGER is

2 begin 9 if (Y < 20 and then X mod 2 = 0) then|
3 X, Y: INTEGER; 10 Y=Y +20;
4 READ(X); READ(Y); 11 else
5 while (X > 10) loop 12 Y:=Y-20;
6 X:=X-10; 13 end if;
7 exit when X =10; 14 return 2*X +Y;
8 end loop; 15 end P;
| Svio - iesuny 13

All-Statements Coverage

kSelect test cases such that every
m in the 8rap11 is visited
® Also called node coverage
oGuarantees that every statement in
the source code is executed at least
once
kSelects minimal number of test

cases

All-Statements Coverage of P

Example all-statements-adequate
test set:
(X=20,Y=10)
<2,34,5,6,7,9,10, 14>
(X=20,Y=230)

<2,3,4,5,6,7,9,12,14>

“10_1f. =

Set 8 - Testing 14

All-Branches Coverage

KSelect test cases such that every
branch in the graph is visited

BGuarantees that every branch in the

source code is executed at least once

kMore thorough than All-

Statements coverage

N

eMore likely to reveal logical errors

|
E

All-Branches Coverage of P

Example all-branches-adequate
test set:

(X=20,v=10)
<2,3,4,5,6,7,9,10,14>

(X=15 Y =30)
<2,3,4,5,6,7,5,9,12,14>

rj

Set 8 - Testing 16

All-Edges Coverage

kSelect test cases such that every
edge in the graph is visited

oTakes complex statements into
consideration — treats them as

separate nodes

kMore thorough than All-Branches

coverage

®More likely to reveal logical errors

Set 8 - Testing 18

All- Edges Coverage of P

At /east 3 test cases needed

£ MQ@Q

N

Example all-edges-adequate test set:
(X=20,Y=10)
<2,34,5,6,7,9a,9b,10,14>
X=5Y=30)

<2,34,5,9a,12,14>
xX=21,v=10)
<2,34,5,6,7,56,7,59a,9b,12,14>

All-Paths Coverage of P

Inﬂn/te/y many test cases needed|

0—6/6

Example all-paths-

adequate test set:
X=5vY=10)
X=15Y=10)

(X=25Y=10)

(X=35Y=10)

21

Data-flow

Test connections between variable
definitions (“write”) and variable uses
(urea dn)

KVariation of the control flow graph

® A node represents a single statement, not a
single~entry-single-exit chain of statements

Kk Set DEF(n) contains variables that are
defined at node n (i.e., theg are written)

kSet USE(n): variables that are read

Set 8 - Testing 23

All-Paths Coverage
kPath coverage

o Select test cases such that every

path in the graph is visited
OLoops are a pro]olem

IIO, 1, average, max iterations
KkMost thorough...
Jbut is it feasible?

Set 8 - Testing 20

“10_1f. =

Subsumption of Ciriteria

KCl subsumes C2 if any Cl-
adeguate test T is also C2-
adequate

oBut some Tl satisfying Cl may
detect fewer faults than some T2

satisfying C2

i Set 8 - Testing 22

Def-Use Pair
KA def-use (DU) pair for variable xis a
kpair of nodes (nl,n?) such that
®xisin DE.F(nl)
o the definition of x at nl yreaches n2
® xisin USE(nQ)
K i.e, the value that is assigned to x at nl
isused at n2
@ Since the cle{mltlon reaches n? the

value is not “killed” along some path
nl.n2
Set 8 - Testing 24

P’s Control and Data Flow
Graph

_I Set 8 - Testing 25

Test Adequacy

k Covemge~Based Testiug

® Coverage metrics

0 when sufficient percentage of the program structure has been
exercise

K Fault-Based Testing

(] Empirical assurance
o when failures/test curve flatten out
® Eror seedins

O percentage of seeded faults found is proportional to the percentage
of real faults found

K Error-Based Testing

® faults found in common are representative of total
population of faults

® Equivalence Partitioning

Test Criteria

K Testing must select a subset of test cases that are
likely to reveal failures
K Test Criteria provicle the 8uide1ines, rules,
strategy by which test cases are selected
® actual test data
® conditions on test data
® reqguirements on test data
Kk Equivalence partitioning is the typical approach

® a test of any value in a given class is equivalent to a
test of any other value in that class

® if a test case in a class reveals a failure, then any other
- test case in that class should reveal the failure

® some approaches limit conclusions to some chosen
class of errors and/or failures
Set 8 - Testin 27

Set 8 - Testing 26

Equivalence Partitioning (EQP)
kTesting technique

eReduces the # of test cases
oMake the # of test cases manageable

BSystematic derivation of test cases

®Reasonably tests the system

Basic Principle:
Some distinctions don’t make a difference

N A= =1

EQP : How does it work

Notice when any element in the partition
will produce the same results

Divide inputs into equivalent

partitions
®ic.Find a small # set of

representativeinput values

o For each Class program behaves in

e an “equivalell’c” way
®Smaller test set — but equally
Set8- MQP“]“I{J 29

l Set 8 - Testing 28

EQP: Reduces test cases

Input domain Input domain
partitioned into four
sub-domains.

[0

Large set of Four test inputs, one
test inputs. selected from each

) N

l sub-domain.
Set 8 - Testing 30

How to partition? Example 1

kSuppose that program P takesan
input X, X being an integer.

kFor X<0 perform task (Tl)
KFor X>=0 perform task (T2)

Set 8 - Testing 31

I N =1

. Set 8 - Testing 33

Set 8 - Testing 32

o
Two sub-domains
Equivalence class\ /Equivalence class
One Possible Anoth
Test Case: nother test case:
X=-3 X=15
o All test inputs in the X<0 sub-domain are considered
equivalent.
o The assumption is that if one test input in this sub-domain

reveals an error in the program, so will the others.

o This is true of the test inputs in the X>=0 sub-domain also.

EQP: Basic Process

K First you must break the input into sub-domains
(partitions)
® Look at input and determine common properties
® Values with in defined range
® Values outside of the defined range
® Extremes
® Try to include input that will force incorrect output
a How well does the code perform exception handling

k I{ the su]’)~clon1«ains are we]l doue

@ should be able to create a few (or ideally)one test
(. J
case that will represent the entire domain

_l Set8 - Testing 35

Set 8 - Testing 34

Include Inputs In and out of
range

Inputs causing
anomalous
behavior

Input Test Data o

Outputs which reveal
the presence of
defects

i Set 8 - Testing 36

EQP: Example 2

KlInput should be a numerical month

o Valid Inputs: 1-12

KWhat are potential Classes?

® Input within range:
ol-12

® Out of Range
oHigh End: 20,99, 3-digit, 4-digit
oLow End: Negative Numbers
ﬂAlphanumexic
I:ISpecial Characters / Punctuation

Set 8 - Testing

37

I N =1

I Set 8 - Testing

EQP &BVA

Kk Input

o D_digit integer between 10,000 and 99,999,
K Partitions

e <10,000

¢ 10,000-99999

e >10,000
K Boundary Values

e 00000

¢ (09,999 -10,000

e 99,998 - 99,999 -100,000
K Outside

o Alphanumeric

° SL] mbols

39

Boundary Value Analysis (BVA)

K Select test cases based on the boundaries values
K Look for inputs

® Onthe boundary

® On cithersside of the boundary

K For numeric month example
° Boundayg Values
o LowEnd: 0,12
o High End: 111215

Kk Coml)ining this technique with Equivalence
Partitioning is much more effective

Set 8 - Testing 38

What do you need to do?
kHavea plan!
®Not monkey testing

KCreate test cases wisely (think

about what they are covering)

KDefine your test cases and results

N A= =1

~ 1

Ready-set Templates
k

k

kAdd results. Pass/ {ail

Set8 - Testing

4

l kSee Read-set templates

o What should it supply?

® What happens if they send the wrong
stutt?

kBasic approaches Run tests

developed

Integration Testing
KPurpose: to exercise the interfaces
between classes/ modules
®Driven 1‘)1] design
®What should it take in?
]

L Top~Down

during the
design phase

e Bottom-up
Set 8 - Testing

Which Approach to use?
K Top-Down or Bottom Up?

K In practice, most integration
involves a combination of these

strategies

Set 8 - Testing 43

One Last Announcement
KNo class Wednesday

I N =1

. Set 8 - Testing 45

B

System Testing

kBlack box..
KRunning Acceptance Test Plan

Set 8 - Testing

44

